Spectral data for parabolic projective symplectic/orthogonal Higgs bundles
نویسندگان
چکیده
Hitchin [Duke Math. J. 54(1), 91–114 (1987)] introduced a proper morphism from the moduli space of stable G-Higgs bundles [[Formula: see text] and [Formula: text]] over curve to vector invariant polynomials, he described generic fibers that morphism. In this paper, we first describe for parabolic projective symplectic/orthogonal Higgs without fixing determinant. We also when determinant is trivial.
منابع مشابه
Variation of moduli of parabolic Higgs bundles
A moduli problem in algebraic geometry is the problem of constructing a space parametrizing all objects of some kind modulo some equivalence. If the equivalence is anything but equality, one usually has to impose some sort of stability condition on the objects represented. In many cases, however, this stability condition is not canonical, but depends on a parameter, which typically varies in a ...
متن کاملAlgebraic Nahm transform for parabolic Higgs bundles on P1
We formulate the Nahm transform in the context of parabolic Higgs bundles on P 1 and extend its scope in completely algebraic terms. This transform requires parabolic Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have poles of arbitrary order and arbitrary behavior. Our methods are constructive in nature and examples are provided. The extended Nahm transform is ...
متن کاملTorelli Theorem for the Moduli Space of Parabolic Higgs Bundles
In this article we extend the proof given by Biswas and Gómez [BG] of a Torelli theorem for the moduli space of Higgs bundles with fixed determinant, to the parabolic situation.
متن کاملParabolic Higgs Bundles and Teichmüller Spaces for Punctured Surfaces
In this paper we study the relation between parabolic Higgs bundles and irreducible representations of the fundamental group of punctured Riemann surfaces established by Simpson. We generalize a result of Hitchin, identifying those parabolic Higgs bundles that correspond to Fuchsian representations. We also study the Higgs bundles that give representations whose image is contained, after conjug...
متن کاملMODULI SPACES OF PARABOLIC U(p, q)-HIGGS BUNDLES
Using the L-norm of the Higgs field as a Morse function, we count the number of connected components of the moduli space of parabolic U(p, q)-Higgs bundles over a Riemann surface with a finite number of marked points, under certain genericity conditions on the parabolic structure. This space is homeomorphic to the moduli space of representations of the fundamental group of the punctured surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2022
ISSN: ['0022-2488', '1527-2427', '1089-7658']
DOI: https://doi.org/10.1063/5.0119058